American Journal of Physical Chemistry

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Comparison of Mono-Ethylene Glycol Prebiotic Synthesis Efficiency via Formose Reaction in Methanol and Water as Solvents: A Short Communication

Formose reaction (FR) is of particular interest in prebiotic chemistry, as well as origin of life research, since it sets the grounds for non-biological chemical reactions producing sugar. In the formose process, which is based on the aldol condensation mechanism, low-carbon aldehyde molecules are transformed into polyol with higher carbon. Moreover, in an alkaline medium with a heterogeneous catalyst present, this process is sped up. This work assesses the efficiency of prebiotic synthesis of mono-ethylene glycol (MEG) via FR when fumed silica (Aerosil) catalyst was present in methanol polar solvent. Comparisons were then made with the same process in the presence of montmorillonite (MMT) as catalyst in water as solvent. The current study demonstrates that the amount of MGA production starts out low and gradually increases when Aerosil and MMT were used as mineral catalysts while methanol and water, respectively, functioned as solvents at pH values of 7.8 and 7.5. Generally speaking, the results indicated that if the target is to produce MEG, water is a better option as an excellent polar solvent in the FR. Consequently, outputs showed higher MEG production efficiency with FR when methanol and Aerosil rather than water when MMT were used as solvent and catalyst, respectively.

Origin of Life, Probiotic Chemistry, Formose Reaction, Mono-Ethylene Glycol, Montmorillonite

Arash Vojood. (2023). Comparison of Mono-Ethylene Glycol Prebiotic Synthesis Efficiency via Formose Reaction in Methanol and Water as Solvents: A Short Communication. American Journal of Physical Chemistry, 12(2), 17-21.

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. A. Vojood, M. Khodadadi Moghaddam, G. Ebrahimzadeh-Rajaei, S. Mohajeri, A. Shamel, J. of Applied Chemistry., 2022, 17, 39-54.
2. Y. Zhang, N. Zheng, K. Wang, S. Zhang, J. Wu, J. Nanomater., 2013, 1-6.
3. H. Yue, Y. Zhao, X. Maa, J. Gong, Chem Soc Rev., 2012, 41, 4218-4244.
4. T. Klotzbucher, A. Kappler, K. L. Straub, S. B. Haderlein, Geothermics., 2007, 36, 348-361.
5. G. A Nematzadeh, M. J Eskandarloo, M. Muhammad-Bello, The Quran and Science. 2021, 15, 315-336, in Persian.
6. M. A. Siraj, M. A. K. Tayab (2017) In: K. V. Raju and S. Manasi (eds) Water and Scriptures, Springer, Heidelberg.
7. Pascal, R.; Pross, A. On the Chemical Origin of Biological Cognition. Life 2022, 12, 2016.
8. H. H. Smith, S. A. Hyde, D. N. Simkus, E. Libby, S. E. Maurer, H. V. Graham, C. P. Kempes, B. Sherwood Lollar, L. Chou, A. D. Ellington, G. M. Fricke, P. R. Girguis, N. M. Grefenstette, C. I. Pozarycki, C. H. House, S. S. Johnson, Life., 2021, 11, 498.
9. S. I Walker, N. Packard, G. D. Muhammad-Bello, Philos. Trans. R. Soc., A., 2017, 375, 1-11.
10. A. P´erez-Villaa, F. Pietruccia, A. Saitta, Phys. Life. Rev., 2021, 34-35, 105135.
11. S. Thripati, R. O. Ramabhadran, J. Phys. Chem., 2017, 121, 8659-8674.
12. K. Ruiz-Mirazo, C. Briones, A. De La Escosura, Chem. Rev., 2014, 114, 285-366.
13. A. Eschenmoser, Tetrahedron., 2007, 63, 12821-12844.
14. D. D. Sasselov, J. P. Grotzinger, J. D. Sutherland, Sci. Adv., 2020, 6, 1-9.
15. S. I. Walker, W. Bains, L. Cronin, S. DasSarma, S. Danielache, S. Domagal-Goldman, B. Kacar, N. Y. Kiang, A. Lenardic, C. D. Reinhard, W. Moore, E. W. Schwieterman, E. L. Shkolnik, H. B. Smith, Astrobiology., 2018, 18, 779–824.
16. A. Omran, C. Menor-Salvan, G. Springsteen, M. Pasek, Life., 2020, 10, 125.
17. M. Melosso, L. Bizzocchi, H. Gazzeh, F. Tonolo, J. C. Guillemin, S. Alessandrini, W. M. Rivilla, L. Dore, V. Barone, C. Puzzarini, Chem. Commun., 2022, 58, 2750-2753.
18. Z. R. Zhao, X. Wang, Chem., 2021, 7, 3292-3308.
19. S. Lamour, S. Pallmann, M. Haas, O. Trapp, Life., 2019, 9, 52.
20. A. Butlerow, Justus Liebigs Ann. Chem., 1861, 120, 295-298.
21. C. Appayee, R. Breslow, J. Am. Chem. Soc., 2014, 136, 3720–3723.
22. A. Vojood, M. Khodadadi Moghaddam, G. Ebrahimzadeh-Rajaei, S. Mohajeri, A. Shamel, Iran. J. Chem. Chem. Eng. (IJCCE). 2021. doi: 10.30492/IJCCE.2022.527613.4665.
23. G. Banfalvi, Int. J. Mol. Sci., 2021, 22, 3857.
24. A. Vojood, M. Khodadadi Moghaddam, G. Ebrahimzadeh-Rajaei, S. Mohajeri, A. Shamel, Chem. Methodol., 2021, 5, 422-432.
25. A. K. Eckhardt, A. Bergantini, S. K. Singh, P. R. Schreiner, R. I. Kaiser, Angew. Chem. Int. Ed., 2019, 58, 5663-5667.
26. G. Banfalvi, DNA Cell Biol., 2021, 39, 177–186.
27. A. H. Weiss, R. F. Socha, V. A Likholobo, M. M. Sakharov, Appl. Catal., 1981, 1, 237-246.
28. J. Castells, F. Lopez-Calahorra, F. Geijo, Carbohydr. Res., 1983, 116, 197-207.
29. G. B. Dalrymple, Geo. Soc. Lond., 2001, 190, 205-221.
30. S. A. Benner, E. A. Bell, E. Biondi, R, Brasser, T. Carell, H. J. Kim, S. J. Mojzsis, A. Omran, M. A. Pasek, D. Trail, Chem Systems Chem., 2021, 2, e1900035.
31. C. Appayee and, R. Breslow, J. Am. Chem. Soc., 2014, 163, 3720–3723.
32. R. Breslow, V. Ramalingam and, C. Appayee, Orig Life EvolBiosph., 2013, 43, 323-329.
33. K. M. Li, J. G. Jiang, S. C. Tian, X. J. Chen, F. Yan, J. Phys. Chem. C., 2014, 118: 2454-2462.
34. V. Jafari, A. Allahverdi, J. Ultrafine Grained Nanostruct. Mater., 2014, 47, 105-112.
35. B. Tyagi, C. D. Chudasama, R. V. Jasra, Spectrochim. Acta, Part A., 2006, 64, 273-278.
36. A. AuxiliadoraTireli, L. do Rosário Guimarães, J. C. de Souza Terra, R. R. da Silva, M. C. Guerreiro, Environ Sci Pollut Res., 2015, 22, 870-881.
37. Z. Danková, A. Mockovčiaková, S. Dolinská, Desalin. Water Treat., 2014, 52, 5462-5469.
38. L. Li, Z. Shen, J. Wang, X. Chen, D. Li, Y. Wu, J. Dong, R. Zhao, W. Gou, J. Wang, S. Li, B. Wang, X. Zheng, Astrophys. J., 2017, 849, 115.
39. J. Yang, X. Fang, G. Ren, T. Yu, New J. Chem. 2023, 47, 558-562.
40. A. K. Eckhardt, M. M. Linden, R. C. Wende, B. Bernhardt, P. R. Schreiner , Nat. Chem., 2018, 10, 1141–1147.
41. M. Mohsen-Nia, H. Amiri, B. Jazi, J Solution Chem., 2012, 39, 701-708.
42. S. Machmudah, Wahyudiono, H. Kanda, M. Goto. In: H. D. González and M. J. González Muñoz (eds). Water Extraction of Bioactive Compounds, Elsevier: Amsterdam, 2018.
43. A. Krishnamoorthy, K. ichi Nomura, N. Baradwaj, K. Shimamura, P. Rajak, A. Mishra, S. Fukushima, F. Shimojo, R. Kalia, A. Nakano, P. Vashishta, Phys. Rev. Lett., 2021, 126, 216403.
44. S. Sachdeva, D. Soccol§, D. J. Gravesteijn, F. Kapteijn, E. J. R. Sudhölter, J. Gascon, L. C. P. M. de Smet, ACS Sens., 2016, 1, 1188–1192.
45. P. L. Luisi, Isr. J. Chem., 2015, 55, 906–918.
46. D. Kunnev, Life. 2020, 10, 269.
47. Pross A., What is Life? How Chemistry Becomes Biology, Oxford University Press: Oxford, 2012.
48. I. V. Delidovich, A. N. Simonov, O. P. Taran, V. N. Parmon, Phys. Rev. Lett., 2014, 7, 1833-1846.
49. M. A. M Paiva, S. Pilling, E. Mendoza, B. R. L Galvão, H. A. De Abreu, Mon. Not. R. Astron. Soc., 2023, 519, 2518–2527.
50. J. Kofoed, M. Machuqueiro, J. L. Reymond, T. Darbre, Chem. Comm., 2004, 1443-1557.
51. E. Camprubi, S. A. Harrison, S. F. Jordan, J. Bonnel, S. Pinna, N. Lane, Astrobiology, 2022, 22, 8981–991.